7 ANÁLISE DE APLICAÇÃO

7.1 Introdução

Em primeiro lugar, deixa-se estabelecido que a análise matemática a seguir considera métodos tanto gráficos quanto analíticos, com o propósito de chegar a um valor uniforme nas variáveis a ser determinadas. Fica estabelecido que a seleção dos métodos obedece a um procedimento ágil para o cálculo da engenharia de um poço com as características apresentadas na presente tese.

Particularmente, em campos de gás natural, o projeto de um sistema de produção não deve ser executado considerando independentemente o desempenho do reservatório e o cálculo do fluxo nas tubulações de produção e nas linhas e equipamentos de superfície. A avaliação do desempenho de um sistema de produção de gás requer a aplicação de um método de análise global que considere simultaneamente o escoamento nos diversos segmentos do sistema.

Neste trabalho de tese, foi feita uma análise global para o Poço PUC - XI, reservatório *ROBORE III, (ver Apêndice D e E),* para o qual foi desenvolvido um *SISTEMA AUTOMATIZADO*, (aplicando todos os métodos apresentados nos capítulos anteriores), utilizando a ferramenta "Excel 2002, Visual Basic Applications", (*Apêndice F*).

De acordo com o método de cálculo desenvolvido, primeiramente determinam-se as propriedades do gás natural apresentadas no *apêndice A*, para então fazer-se a análise global de todo o sistema, aplicando os métodos apresentados nos *capítulos 3 , 4 e 5*.

7.2 Dados Básicos

Os dados a utilizar para determinar as propriedades do gás natural e o desenvolvimento da análise global de todo o sistema foram registrados no *Anexo* $D \ e \ E$, são os seguintes:

Parâmetros		Unidades	Valor
Permeabilidade	k	md	1,234
Capacidade de Fluxo	kh	md-ft	76,5
Dano	S		17,8
Pressão Reservatório	Pr	psia	10477
Temp. Reservatório	Tr	°F	270
Espessura do Reservatório	ht	pés	62
Porosidade	φ		0,07
Saturação água	Sw		0,45
Saturação gás	Sg		0,55
Compressibilidade	Ct	psi^-1	2,7 e-5

Tabela 7.1 Parâmetros Do Reservatóri

Tabela 7.2 parâmetros do fluido					
Parâmetros		Unidades	Valor		
Densidade Gás	dg		0,63		
Densidade Condensado	API	°API	59		
Relação Cond – Gás	RCG	STB/MMscf	16,0		
Salinidade água		ppm	700		

	Tabela 7.3 Dados do Teste Seqüencial								
Тетро	СК	P.Surg.	Pet	Gás	RGP	°API	Água	Salin	Press.
Hrs	n/64"	PSI	BPD	MMPCD	PC/BBL		BPD	PPM Cl-	fundo
12	12	5950	72	4,817	66903	58,6	6	700	7815
12	16	4380	88	6,296	71545	58,6	11	700	6009
12	20	3350	98	7,337	74867	58,2	17	700	4865
12	24	2460	109	8,080	74128	58,2	17	700	3978

Componente	Formula	Fração Molar
Metano	CH ₄	90,74
Etano	C_2H_6	3,77
Propano	C_3H_8	1,15
Iso-Butano	iC_4H_{10}	0,19
Butano Normal	$nC_{4}H_{10}$	0,27
Iso-Pentano	$iC_{5}H_{12}$	0,12
Pentano Normal	$nC_{5}H_{12}$	0,09
Hexano	$C_{6}H_{14}$	0,18
Heptano +	$C_7 H_{16}^+$	0,1
Nitrogênio	N_2	0,01
Dióxido de Carbono	CO_2	3,38
Gás Sulfídrico	H_2S	0,0

Tabela 7.4 Composição do Gás Natural, Poco PUC – X1

7.3 Determinação das propriedades do Gás Natural do Poço PUC – X1

Seguindo todos os procedimentos de cálculos fornecidos no *apêndice A*, determinam-se todas as propriedades do Gás Natural do *Poço PUC – X1* reservatório *ROBORE III*. Estas propriedades são:

- ♣ Peso Molecular Aparente
- 📥 Densidade
- ∔ 🛛 Fator Z
- 📥 Massa Específica
- Fator Volume de Formação
- **4** Compressibilidade Isotérmica
- 4 Viscosidade

7.3.1 Peso Molecular Aparente, M_a

		Ta Peso Mole	bela 7.5 ecular Aparente	
Comp.	Yi (1)	Yi	Mi (2)	YiMi (3)
	%			
C1	90,7400	0,9074	16,043	14,557
C2	3,7700	0,0377	30,070	1,134
C3	1,1500	0,0115	44,097	0,507
iC4	0,1900	0,0019	58,123	0,110
nC4	0,2700	0,0027	58,123	0,157
iC5	0,1200	0,0012	72,150	0,087
nC5	0,0900	0,0009	72,150	0,065
C6	0,1800	0,0018	86,177	0,155
C7+	0,1000	0,0010	114,231	0,114
N2	0,0100	0,0001	28,013	0,003
CO2	3,3800	0,0338	44,010	1,488
H2S	0,0000	0,0000	34,080	0,000
Soma	100,000	1,000		18,377

(1) Tabela 7.4, (2) Tabela A.2, (3) Elaboração própria

Aplicando-se a equação A.3 página 217,o peso molecular da mistura gasosa

 $M_a = 18,377 \, lbm/lb - mol$

7.3.2 Densidade

Aplicando-se a equação A.7, página 218, o valor da densidade é

 $\gamma_g = 18,377/28,97 = 0,634$

7.3.3 Fator compressibilidade Z

As correlações a ser utilizadas para a obtenção do fator Z são:

- Brill & Beggs
- Hall Yarborough

7.3.3.1 Correlações de Brill & Beggs

Fazendo uso da *equação A.26*, *página 229*, procede-se na determinação do valor de Z:

Tabela 7.6 Fator Z – Brill & Beggs				
А	0,6305			
В	7,2577			
С	0,0341			
D	1,1635			
Ζ	1,467			

7.3.3.2 Correlações de Hall-Yarborough

Mediante a equação A.33, página 232, obtém-se o valor de Z de:

Tabela 7.7	,
Fator Z –Hall-Yarl	porough
Número de Iterações	5
Ζ	1,418

Conforme esperado, os resultados da aplicação de ambos os métodos são próximos, como pode ser visto na tabela seguinte.

Tabela 7.8 Resumo dos valores o	btidos de Z
Método de Cálculo	Valores de Z (*)
Brill & Beggs	1,467
Hall-Yarborough	1,418

* Elaboração própria

7.3.4 Massa Específica

Aplicando-se a *equação A.5, página 218,* para gases reais, para cada valor de Z determinado pelos diferentes métodos propostos, a *tabela 7.9* mostra os valores da massa específica.

Tabela 7.9 Massa Específica do Gás Natural- Poço PUC – X1						
Método de Z	Z (1)	$P_r(2)$	$T_r(2)$	M(3) Lbm/lb-mol	R(4)	$ ho_g$ (5)
		Psia	К		psia ft ⁹ /lb – mol [®] R	lb/ft^3
Brill & Beggs	1,467	10477	730	18,377	10,73	16,755
Hall-Yarborough	1,418	10477	730	18,377	10,73	17,334

(1) Tabela 7.8, (2) Tabela 7.1, (3) Tabela 7.5, (4) Tabela A.1, (5) Elaboração própria.

7.3.5 Fator Volume de Formação, B_g

Para cada método de cálculo do fator Z mostrado na *tabela 7.8* tem-se um valor de *fator volume de formação*, o qual é determinado através das *equações* A.41, A.42, A.43 e A.44 para diferentes unidades, *páginas 234, 235*.

Tabela 7.10 Fator Volume de Formação							
Método de Z	Z (1)	p _r (2) Psia	T _r (2) ° R	B _g (3) ft ³ /scf	B _g (3) bbls/scf	B _g (3) scf/ft ³	B _g (3) scf/bbls
Brill & Beggs	1,467	10477	730	0,00289	0,00052	345,839	1941,000
Hall-Yarborough	1,418	10477	730	0,00280	0,00050	357,789	2008,073

(1) Tabela 7.8, (2) Tabela 7.1, (3) Elaboração própria

7.3.6 Compressibilidade Isotérmica

7.3.6.1 Propriedades pseudo criticas

Utilizando-se as *equações A.13 e A.14, página 224 e 225*, obtém-se resultados das propriedades pseudo críticas mostrados na *tabela 7.11*.

	Propriedades Pseudo Críticas da Mistura						
Comp	yi (1) %	yi	Pci (2) psia	yi Pci (3)	Tci (2) °R	yi Tci (3)	
C1	90,7400	0,9074	666,4	604,691	343,00	311,238	
C2	3,7700	0,0377	706,5	26,635	549,59	20,720	
C3	1,1500	0,0115	616,0	7,084	665,73	7,656	
iC4	0,1900	0,0019	527,9	1,003	734,13	1,395	
nC4	0,2700	0,0027	550,6	1,487	765,29	2,066	
iC5	0,1200	0,0012	490,4	0,588	828,77	0,995	
nC5	0,0900	0,0009	488,6	0,440	845,47	0,761	
C6	0,1800	0,0018	436,9	0,786	913,27	1,644	
C7+	0,1000	0,0010	360,7	0,361	1023,89	1,024	
N2	0,0100	0,0001	493,1	0,049	227,36	0,023	
CO2	3,3800	0,0338	1071	36,200	547,58	18,508	
H2S	0,0000	0,0000	1300	0,000	672,12	0,000	
SOMA		1,0000		679,324		366,030	

Tabela 7.11

(1) Tabela 7.1 (2) Tabela A.2, (3) Elaboração própria

7.3.6.2 Correções das propriedades pseudo críticas

Devido à presença de gases não hidrocarbonetos, deve-se fazer uma correção das propriedades pseudo críticas aplicando-se a *equação A.19*, *página 228*, obtém-se o valor de ajuste para então aplicar as *equações A.20 e A.21* para obter os valores de temperatura e pressão pseudo críticas ajustadas.

- Fator de ajuste $\mathcal{E} = 5,160$
- Pressão pseudo crítica ajustada: $p'_{pc} = 669,748 \ psia$
- Temperatura pseudo critica ajustada: $T'_{pr} = 360,869 \,^{\circ} R$

7.3.6.3 Propriedades pseudo reduzidas

Fazendo uso das *equações A.24 e A.25*, *página 229* obtém-se os valores de pressão e temperatura pseudo reduzidas.

- Pressão Pseudo reduzida $P_{pr} = 15,643$

- Temperatura Pseudo reduzida $T_{pr} = 2,023$

A compressibilidade do Gás Natural é resolvida utilizando-se a aproximação $(\partial Z/\partial p_r)_{T_r}$, *equação A.49*, *página 236*, dando valores de 50 psia acima e 50 psia abaixo da pressão do reservatório, apresentados a seguir.

P _r (Psia)	p _{pr}	Ζ
10427	15,569	1,462
10477	15,643	1,467
10527	15,718	1,472

A compressibilidade relativa é:

$$C_r = \frac{1}{15,643} - \frac{1}{1,467} \left(\frac{1,462 - 1,472}{15,569 - 15,718} \right)$$

 $C_r = 0,01818$

Então, o valor da compressibilidade do gás é:

$$C = \frac{0,01818}{669,748} = 2,714 \times 10^{-5} \text{ psi}^{-1}$$

7.3.7 Viscosidade do Gás Natural

A viscosidade do gás natural será determinada pelo uso dos métodos apresentados, que são:

7.3.7.1 Método de Carr, Kobayashi e Burrows

Etapa 1 Viscosidade do gás à pressão atmosférica

A partir da *figura A.8, página 241* determinamos a viscosidade do gás à pressão atmosférica, *(1 atm.)* para um peso molecular de 18,377 e uma temperatura do reservatório de 270°F.

 $\mu_1 = 0,0138 \, cp$

Etapa 2 Correções pela presença de N_2 , $CO_2 \in H_2S$.

A partir da mesma figura obtemos, valores de:

N _{2 (0,01%)}	=	0,00001
<i>CO</i> _{2 (3,38%)}	=	0,0002
$H_2S_{(0,0\%)}$	=	0,00000

Com a equação A.50, página 237, determinamos o valor da viscosidade do gás corrigida.

 $\mu_{1 corr} = 0,01401 cp$

Etapa 3 Pressão e temperatura pseudo reduzidas

-	Pressão pseudo reduzida:	$p_{pr} = 15,643$
-	Temperatura pseudo reduzida:	$T_{pr} = 2,023$

Etapa 4 Relação μ/μ_1

Tal relação é obtida a partir da figura A.10, página 243, o valor encontrado é:

 $\mu/\mu_1 = 2,43$

Etapa 5 Valor da viscosidade

Fazendo uso da *equação A.51, página 236,* o valor da viscosidade do gás natural é:

 $\mu = 0,034 \ cp$

7.3.7.2 Método de Lee, Gonzalez e Eakin

O valor da viscosidade, é determinado com o uso da *equação A.52, página 238.*

Tabela 7.12 Viscosidade do Gás Natural							
Método Z	$\rho_g(1)$ K X Y μ						
	gr/cm ³				ср		
Brill & Beggs	0,269	149,555	5,034	1,393	0,0335		
Hall-Yaborough	0,278	149,555	5,034	1,393	0,0348		

(1) Tabela 7.9 dividido entre 62,4 (2) Elaboração própria

7.4 Análise reservatório - poço

Foi determinado o *Potencial Absoluto*, *(AOF)* para o poço em estudo aplicando-se os métodos propostos no *capítulo 3*, são eles:

- 4 Simplificado
- Laminar Inercial Turbulento (LIT)
 - o Pressão
 - Pseudo Pressão

Na determinação do AOF e da Curva do Comportamento do Reservatório, IPR, para visualizar a relação $(P_{wf vs} q)$, utilizaram-se os dados do teste seqüencial, *tabela 7,3* e os dados do reservatório apresentados na *tabela 7.1*.

Inicialmente far-se-á uma análise do teste para validar os resultados dos períodos de fluxo, identificando as vazões mínimas para o levantamento de líquido contínuo e a velocidade de erosão.

7.4.1

Vazão de fluxo mínimo para o levantamento de líquido contínuo e vazão de erosão

É necessário verificar as vazões mínimas de arrasto de fluido no fundo do poço devido à produção de líquido e segregação gravitacional, que causa uma acumulação de líquido no fundo, dando resultados errados, já que há tampões de líquido incrementando a pressão de fluxo no fundo, dando uma interpretação errada do potencial.

De acordo com o anteriormente mencionado, foi confeccionada uma tabela onde encontram-se as vazões mínimas de produção, tanto para o arrasto de condensado como também da água. Fazendo uso da *equação 4.59, página 115*.

Vazão de fluxo mínima para o levantamento de líquido continuo								
Período	Vazão	Choke	Pres	Vel	Vel	Vazão	Vazão	
DeFluxo	De Gás	Ck/64"	Surg	Gás/Água	Gás/Conde	Min.G/A	Min.G/C	
(1)	MMscfd (1)	(1)	Psia (1)	Pé/seg (2)	Pé/seg (2)	MMscfd (2)	MMscfd (2)	
Fluxo 1	4,817	12	5950	3,38	2,22	2,35	1,54	
Fluxo 2	6,296	16	4380	4,04	2,69	2,43	1,63	
Fluxo 3	7,337	20	3350	4,68	3,15	2,40	1,62	
Fluxo 4	8,080	24	2460	5,52	3,75	2,17	1,47	

Tabela 7.13

G/A = Gás – Água, G/C = Gás – Condensado, (1) Tabela 7.3, (2) Elaboração Própria

Na tabela anterior, os resultados de vazões de fluxo mínima tanto para gás – água e gás – condensado, onde podemos concluir que os quatro fluxos do teste são apropriados para a aplicação da análise global, quer dizer que cumprem com as vazões mínimas de arrasto tanto de condensado como de água.

A vazão de erosão indica a máxima vazão de fluxo que se deve ter para não erosionar o sistema tubular na qual ocorreria problemas no sistema sub-superficial e superficial.

Para cada período de fluxo, aplicando as *equações 4.67 e 4.68*, *página 119*, a velocidade e vazão de erosão são:

Tabela 7.14 Velocidade e Vazão de Erosão						
Velocidade de erosão	Vazão de erosão					
pé/seg (1)	MMscfd (1)					
22,93	15,89					
24,58	14,82					
26,67	13,66					
30,45	11,97					

(1) Elaboração própria

Observa-se na *tabela 7.14* que o teste em análise não resultou em problemas de erosão tubular.

7.4.2 Método simplificado

Seguindo o procedimento de cálculo no *capítulo 3, item 3.5.1*, obtemos o valor de *AOF*. Com os dados da *tabela 7.3*, determina-se o valor da diferencial de pressão (Dp^2) mostrado na *tabela 7.15*, para então determinar o valor do exponente "n", fazendo uso da *equação 3.85, página 81*. Portanto o valor encontrado de n é:

n = 0.7836

Tabela 7.15 Análise Simplificado							
Período	Choke	Duração	Pressão	Pressão	Vazão	Vazão	<i>Dp^2</i>
de Fluxo	Ck/64"	Hr	Psia	fechamento	MMscfd	Mscfd	MMpsia^2
(1)	(1)	(1)	(1)	Psia, (1)	(1)	(2)	(2)
Estática inicial	8	38	10477	10477	0,000	0,000	0,000
fluxo 1	12	12	7815	10463	4,817	4817	48,400
fluxo 2	16	12	6009	10463	6,296	6296	73,366
fluxo 3	20	12	4865	10463	7,337	7337	85,806
fluxo 4	24	12	3978	10463	8,080	8080	93,650

(1) Tabela 7.3 (2) Elaboração Própria.

A partir da tabela anterior, considerando-se os valores de vazão (q) e diferencial de pressão (Dp^2) é possível determinar o potencial máximo do poço (AOF), apresentado no gráfico 7.1. Gráfico logarítmico, $\left(p_R^2 - p_{wf}^2\right)$ versus q_g

A equação 3.86, página 81 para uma vazão de 8080 Mscfd e um $DP^2 = 93,650 MMpsia^2 psia$, proporciona um resultado de C.

$$C = 0.004579 MPCD / psia^2$$

Análise de Aplicação

A equação que representa o potencial absoluto do poço, *equação 3.83, página 80*, é a seguinte:

$$q_{sc} = 0,004579 \left(P_R^2 - P_{wf}^2 \right)^{0,7836}$$

Se o poço tem na superfície uma contrapressão de 14.7 psia, seu potencial absoluto tem um valor quantitativo igual a:

$$AOF = 9,150 MMscfd$$

O gráfico 7.2 mostra a curva do comportamento atual do reservatório gerada com base em diferentes valores estimados de vazão, fornecendo sua correspondente pressão de fundo do poço para o coeficiente "C" e exponente "n" encontrados anteriormente. As vazões assumidas estão no seguinte intervalo $0 \le Q_{sc} \le AOF$; foi adotado um incremento da vazão assumida do 10% do valor do AOF.

Tabela 7.16 Curva de Comportamento do Reservatório (CCR) Método Simplificado					
Vazão Gás Assumida	Pressão de fundo do poço				
Qsc (Mscfd)	Pwf (psia)				
(1)	(2)				
0,00	10477,00				
915,07	10195,84				
1830,14	9782,16				
2745,22	9281,75				
3660,29	8699,16				
4575,36	8027,70				
5490,43	7250,60				
6405,51	6335,37				
7320,58	5215,44				
8235,65	3716,10				
9150,72	0,00				

(1) Vazão Assumida (incremento do 10% ao valor do AOF) (2) Elaboração Própria

7.4.3 Método de pressão

Este método é recomendado para reservatórios que estejam na região de alta pressão (> 3000 psi), como explicado na *página 64*. Isso justifica a escolha deste método de determinação do Potencial Absoluto. O procedimento de cálculo deste método apresenta-se na *página 90*, e inicia-se a partir da seguinte tabela.

Tabela 7.17 Análise Pressão							
Período de	Choke	Duração	Pressão	Pressão de	Vazão	DP	DP/q
Fluxo	Ck/64	Hr	Psia	fechamento	Mscfd	Psia	Psia/Mscfd
(1)	(1)	(1)	(1)	Psia (1)	(1)	(2)	(2)
fluxo 1	12	12	7815	10463	4817	2648	0,550
fluxo 2	16	12	6009	10463	6296	4454	0,707
fluxo 3	20	12	4865	10463	7337	5598	0,763
fluxo 4	24	12	3978	10463	8080	6485	0,803

(1) Tabela 7.3 (2) Elaboração Própria.

Com base na *tabela 7.17*, determina-se o *gráfico 7.3*, onde podemos obter os valores dos coeficientes turbulento *B* e laminar *A*.

Segundo o *gráfico 7.3*, o valor da pendente que representa ao coeficiente de fluxo turbulento, "B" é:

$$B = 8 \times 10^{-5} psia / Mscfd^2$$

Interceptando-se a reta do *gráfico 7.3* com o eixo das ordenadas, é possível obter o coeficiente de fluxo laminar, "A", cujo valor é:

$$A = 0,1937 psia / Mscfd$$

Com os coeficientes A e B encontrados nos passos anteriores foi obtida a seguinte equação geral:

$$P_R - P_{wf} = 0,1937 \, q + 0,00008 \, q^2$$

Resolvendo essa equação para uma pressão de fundo poço 0 psi, o valor do AOF é:

$$AOF = 10,297 MMscfd$$

Fazendo uso da equação 3.99, página 90 deve-se assumir diferentes valores da vazão e determinar as diferentes pressões de fundo do poço; a tabela 7.18 mostra os diferentes valores de pressão do fundo para diferentes valores assumidos da vazão. Esta tabela nos permite determinar o gráfico 7.4, que mostra o comportamento da IPR.

Vazão Gás Assumida	Pressão de fundo do poço
Qsc (Mscfd)	Pwf (psia)
(1)	(2)
0,000	10477,00
1029,712	10192,72
2059,423	9738,79
3089,135	9115,21
4118,847	8321,99
5148,558	7359,11
6178,270	6226,59
7207,982	4924,41
8237,693	3452,59
9267,405	1811,12
10297,116	0,00

Tabela 7.18

(1) Vazão assumida, (10% de incremento do valor do AOF) (2) Elaboração Própria.

7.4.4 Método pseudo pressão

A função pseudo pressão para gás real é definida como a função, m(p)expressa na equação 3.31, página 66, a metodologia de calculo é apresentada no Apêndice C.

Através o método de cálculo de integração numérica apresentado no apêndice C, determina-se o valor de m(p), tabela 7.19 e seu gráfico correspondente, gráfico 7.5.

Cálculo da Função Pseudo – Pressão m(P)							
Press As	FATOR	VIS.GAS	P/ZU	∆m(p)	m(p)	m(p)	
PSI	<i>COMP."Z</i> "	ср		psi^2/cp	psi^2/cp	MMpsi^2/cp	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
0,00	1,000	0,015	0	0	0	0	
1047,70	0,957	0,016	69211	72512494	72512494	73	
2095,40	0,934	0,018	127725	206330383	278842877	279	
3143,10	0,938	0,020	168464	310317645	589160522	589	
3978,00	0,961	0,022	188290	297854044	887014567	887	
4190,80	0,970	0,023	191882	80900698	967915265	968	
4865,00	1,005	0,024	200279	264394870	1232310135	1232	
5238,50	1,027	0,025	203390	150770140	1383080275	1383	
6009,00	1,080	0,027	207436	316541530	1699621805	1700	
6286,20	1,101	0,027	208324	115248836	1814870641	1815	
7333,90	1,185	0,029	209991	438269134	2253139775	2253	
7815,00	1,225	0,030	210161	202135343	2455275117	2455	
8381,60	1,274	0,031	210066	238100651	2693375769	2693	
9429,30	1,367	0,033	209353	439424990	3132800759	3133	
10463,00	1,461	0,034	208270	431696810	3564497568	3564	
10463,00	1,461	0,034	208270	0	3564497568	3564	
10463,00	1,461	0,034	208270	0	3564497568	3564	
10463,00	1,461	0,034	208270	0	3564497568	3564	
10477,00	1,462	0,034	208254	5831334	3570328903	3570	

Tabela 719

(1): Press. Assumida, incluindo os dados de pressão do teste, tabela 7,3, (2): Z calculado pelo método Brill & Beggs, (3): μ obtido pelo método Lee, Gonzalez e Eakin, (4): (1)/(2)* (3), (5): equação C.2, Apêndice C, (6): valor acumulado de (5), (7): (6)/1E6

Com os valores de pseudo pressão, m(p) encontrados na *tabela 7.19* para as pressões de abertura e fechamento do fluxo, elabora-se a *tabela 7.20*. Com base nesta tabela e aplicando mínimos quadrados, foram encontrados os valores dos coeficientes laminar "A" e turbulento "B", *equações 3.101 e 3.102*, *página 91*; também foram determinados esses coeficientes a través do *gráfico 7.6*, que está em função da *tabela 7.20*.

Tabela 7.20 Análise Pseudo Pressão											
		2		Pressão de		4 \ 9					
Período de	Choque	Dura	Pressão	fecham.	Vazão	m(p) fluxo	m(p) fecha	$\Delta M(p)$	$\Delta M(p)/q$	q^{2}	$\Delta M(p)$ - bq^2
fluxo	CK/64"	hr	psia	psia	MMscfd	MMpsi^2/cp	MMpsi^2/cp	MMpsia^2/cp	psia^2/scfdcp	x10^12	
Fluxo 1	12	12	7815	10463	4,817	2455,275	3564,498	1109,222	230,272	23,203	390,532
Fluxo 2	16	12	6009	10463	6,296	1699,622	3564,498	1864,876	296,200	39,640	637,103
Fluxo 3	20	12	4865	10463	7,337	1232,310	3564,498	2332,187	317,867	53,832	664,842
Fluxo 4	24	12	3978	10463	8,08	887,015	3564,498	2677,483	331,372	65,286	655,343
somatória					26,530			7983,768	1175,711	181,96	2347,820

Segundo a *tabela 7.20* e o *gráfico 7.6,* o valor da pendente que representa o coeficiente de fluxo turbulento "B" é:

$$B = 30,973 MMpsia^2 / cp / MMscfd^2$$

Interceptando a reta do mesmo gráfico com o eixo das ordenadas, obtém-se o coeficiente de fluxo laminar "A", cujo valor é:

$$A = 88,497 MMpsia^2 / cp / MMscfd$$

Com os coeficientes A e B encontrados nos passos anteriores e substitui-os na *equação 3.100, página 91* obtemos a seguinte equação geral:

$$m(p_R) - m(p_{wf}) = 88,497 q + 30,973 q^2$$

Resolver esta equação assumindo diferentes valores de vazão, determinando os valores de pseudo pressão, $m(p_{wf})$, para assim construir o gráfico que representa a curva do comportamento baseado no método *pseudo pressão, gráfico* 7.7. Com esses valores de pseudo pressão, $m(p_{wf})$ ir à *tabela 7.19* e determinar os valores das pressões de fundo do poço (p_{wf}) , (interpolar se necessário), ver *tabela 7.21*. Da mesma maneira que o método anterior, fazendo uso da *equação geral*, substituindo valores de pseudo pressão para um valor de $m(p_{wf}) = 0$, o valor do *AOF*, é:

$$AOF = 9,402 MMscfd$$

método pseudo pressão						
Vazão Gás (Assum)	Pseudo pressão	Pressão fundo poço				
Qsc (MMscfd)	m (pwf) MMpsia^2/cp	Tabela ou gráfico m(p), psia				
(1)	(2)	(3)				
0,00	3570	10477				
940,25	3460	10212				
1880,49	3294	9816				
2820,74	3074	9290				
3760,98	2799	8634				
4701,23	2470	7849				
5641,48	2085	6933				
6581,72	1646	5879				
7521,97	1152	4661				
8462,22	603	3183				
9402,46	0	0				

Tabela 7.21 Curva de Comportamento do Reservatório (CCR) método pseudo pressão

(1) Vazão Assumida (2) Tabela 7.19 (3) Elaboração Própria

O valor do *AOF* para os métodos apresentados anteriormente observa-se na seguinte tabela;

Tabela 7.22 Resumo dos valores de AOF(Teste)					
Tipo de Análise	AOF				
	Cálculo	MMscfd			
Simplificado	n = 0,784	9,150			
	C = 0,0046				
Pressão	A = 0,1937	10,297			
	B = 0,00008				
Pseudo Pressão	A = 88,497	9,402			
	B = 30,973				

Análise de Aplicação

Aplicando-se um resumo também das curvas *IPR* de cada um dos métodos, apresentado no *gráfico 7.8*.

Tabela 7.23 Curva de Comportamento do Reservatório (CCR)					
Vazão Gás	Pressão fundo	Vazão Gás	Pressão	Vazão Gás	Pressão
Assum	psia	Assum	Fundo psia	Assum	Fundo
MMscfd		MMscfd	psia	MMscfd	psia
	Simplificado		Pressão		Pseudo
					Press.
0,00	10477	0,00	10477	0,00	10477
915,07	10196	1029,71	10193	940,25	10212
1830,14	9782	2059,42	9739	1880,49	9816
2745,22	9282	3089,13	9115	2820,74	9290
3660,29	8699	4118,85	8322	3760,98	8634
4575,36	8028	5148,56	7359	4701,23	7849
5490,43	7251	6178,27	6227	5641,48	6933
6405,51	6335	7207,98	4924	6581,72	5879
7320,58	5215	8237,69	3453	7521,97	4661
8235,65	3716	9267,40	1811	8462,22	3183
9150,72	0	10297,12	0,00	9402,46	0,00

7.4.5 Cálculo do AOF através de dados de reservatório

O método *pressão* aplica-se à equação 3.95, *página 90*, para determinar os valores da vazão para cada valor assumido de pressão de fluxo do poço para obter os valores da vazão, primeiramente devemos determinar os coeficientes laminar *A* e turbulento *B*, para cada valor assumido da pressão de fluxo do poço; para obter os valores desses coeficientes aplicam-se as *equações 3.96 e 3.97, página 90*. A *equação 3.95* tem a forma quadrática, portanto, para obter o valor da vazão para cada pressão assumida, faz-se uso da *equação 3.99, página 90*. Para uma $p_{wf} = 0 \ psi$, obtém-se o valor do potencial absoluto, que é:

AOF = 11,81 MMscfd

para resolver o método pseudo pressão, aplica-se a equação 3.100, página 91, da mesma forma que o método anterior determinamos o coeficiente laminar A e turbulento B, aplicando as equações 3.103 e 3.104, página 91. Então determinamos o valor do m(p) para cada valor da pressão assumida seguindo o mesmo método de cálculo na tabela 7.19; com todos esses dados prontos, procede-se à determinação do valor da vazão. O AOF é determinado para uma $p_{wf} = 0 psi$ e o valor do potencial é:

AOF = 10,12 MMscfd

Seguindo a forma de cálculo de cada um dos métodos, obtém-se os seguintes valores de vazão para cada valor assumido de pressão de fluxo do poço, *tabela 7.24*; com esses dados obtém-se as curvas *IPR*, *gráfico 7.9*.

Pressão Fundo Psia (1)	Vazão Gás MMscfd Pressão (2)	Vazão Gás MMscfd Pseudo Press.(2)
10477	0,00	0,00
9429	1,25	1,25
8382	2,50	2,50
7334	3,74	3,75
6286	4,98	4,99
5239	6,21	6,21
4191	7,42	7,38
3143	8,61	8,45
2095	9,75	9,33
1048	10,83	9,91
0	11,81	10,12

Tabela 7.24Curva do Comportamento do Reservatório (CCR)

(1) Press. Assumida (2) Elaboração Própria

Fazendo uma análise do comportamento do fluxo reservatório - poço, tanto com dados do teste, *tabela 7.23, gráfico 7.8*, quanto com dados do reservatório, *tabela 7.24, gráfico 7.9*, vemos que o comportamento do poço é o mesmo para baixas vazões, qualquer que seja o método a utilizar. Quando o poço produz com altas vazões, há diferença no seu comportamento de um método para outro.

7.5 Análise na coluna de produção e linha de fluxo

A análise é feita na cabeça do poço como nó solução (*nó 3, figura 6,4*); o sistema é dividido em dois componentes, constituindo o reservatório e o tubo de produção como um componente, e o separador e a linha de surgência como um segundo componente. O procedimento de cálculo para esta análise é apresentado na *página 140*.

7.5.1 Coluna de produção

O primeiro componente, com a pressão do reservatório, assume uma vazão que procede para o centro do poço de modo a obter a pressão de fluxo do poço (métodos apresentados no *item 7.4,* simplificado, pressão e pseudo pressão); com a pressão encontrada no fundo continua-se em direção ao topo da coluna de produção para encontrar a pressão na cabeça do poço. Neste componente os métodos para determinar a pressão na cabeça são:

Femperatura e Compressibilidade Média

📥 Cullender e Smith

Os dados principais utilizados pelos métodos mencionados na determinação da pressão na cabeça são :

Temperatura na Cabeça do Poço	T_{wh}	545 °R
Comprimento da Tubulação	Н	14331,4 ft.
Diâmetro Interno da Tubulação	d_i	1,995- 2,445- 3,00- 3,5 in.
Espessura da Tubulação	е	0,0006 in.

7.5.1.1 Temperatura e compressibilidade média

Para o desenvolvimento deste método, fazemos uso das vazões assumidas e das pressões de fluxo do poço (p_{wf}) ; utilizamos a *equação 4.47, página 110,* seguindo o procedimento de cálculo na *página 111.*

A *tabela 7.25* resume as vazões assumidas, pressões no fundo determinadas pelo método *pseudo pressão*, e a pressão na cabeça encontrada por este método de

Análise de Aplicação

cálculo, sensibilizando o diâmetro da tubulação para diferentes valores em polegadas.

(método temperatura e compressibilidade média)					
Vazão Gás	Pressão fundo	Pressão	Pressão	Pressão	Pressão
q_{sc}	poço, p _{wf}	Cabeça	cabeça	cabeça	cabeça
MMscfd	Psia (1)	p_{wh}	p_{wh}	p_{wh}	p_{wh}
(1)		Psia (2)	Psia (2)	Psia (2)	Psia (2)
		1,995"	2,445"	3,00"	3,500"
0,00	10477	8555	8555	8555	8555
0,94	10212	8304	8307	8309	8309
1,88	9816	7924	7937	7941	7943
2,82	9290	7416	7444	7454	7458
3,76	8634	6784	6834	6852	6858
4,70	7849	6028	6109	6138	6147
5,64	6933	5149	5271	5316	5329
6,58	5879	4146	4327	4392	4412
7,52	4661	2993	3271	3368	3397
8,46	3183	1454	2030	2203	2253
9,40	0	0	0	0	0

Tabela 7.25 Valores estimados da pressão na cabeça do poço para diferentes diâmetros (método temperatura e compressibilidade média)

(1) Tabela 7.23 (2) Elaboração própria.

O *gráfico* 7.10 apresenta as curvas do comportamento na tubulação vertical, para o método de *temperatura e compressibilidade média*.

7.5.1.2 Método Cullender e Smith

Da mesma forma que o método anterior, para o desenvolvimento do método faz-se uso das vazões assumidas e as pressões de fluxo do poço (p_{wf}) determinadas pelo *método pseudo pressão*.

Para a solução deste método, utiliza-se a *equação 4.52, página 112* e *equação 4.53 página 113*, seguindo o procedimento de cálculo na *página 113*.

Análise de Aplicação

A tabela 7.26 resume as vazões assumidas, pressões no fundo determinadas pelo método pseudo pressão e a pressão na cabeça encontrada por este método de cálculo, sensibilizando o diâmetro da tubulação para diferentes valores em polegadas.

Valores estimados da pressão na cabeça do poço para diferentes diâmetros (Método Cullender & Smith						
Vazão Gás	Pressão fundo	Pressão	Pressão	Pressão	Pressão	
q_{sc}	poço,	Cabeça	cabeça	cabeça	cabeça	
MMscfd	p_{wf}	p_{wh}	p_{wh}	p_{wh}	p_{wh}	
(1)	Psia (1)	Psia (2)	Psia (2)	Psia (2)	Psia (2)	
		1,995"	2,445"	3,00"	3,500"	
0,00	10477	8557	8557	8557	8557	
0,94	10212	8306	8309	8310	8310	
1,88	9816	7926	7937	7941	7942	
2,82	9290	7417	7444	7453	7456	
3,76	8634	6784	6832	6849	6854	
4,70	7849	6027	6106	6133	6141	
5,64	6933	5147	5267	5308	5320	
6,58	5879	4145	4321	4382	4400	
7,52	4661	2999	3266	3356	3382	
8,46	3183	1510	2045	2201	2244	
9,40	0	0	0	0	0	

Tabela 7.26

(2) Tabela 7.23 (2) Elaboração própria.

O gráfico 7.11 apresenta as curvas do comportamento na tubulação vertical, pelo método de Cullender e Smith.

Fazendo uma comparação dos resultados obtidos nas tabelas 7.25 e 7.26 e as pressões na cabeça do poço pelos dois métodos para os diferentes diâmetros de tubulação, observa-se que a diferença no valor da pressão não é muito significativa. Portanto, o método escolhido não faz nenhuma diferença no valor da pressão na cabeça do poço. Para continuar a análise nos outros componentes o valor da pressão na cabeça do poço neste trabalho será aquele encontrado pelo método Cullender e Smith.

7.5.2 Linha de fluxo

O segundo componente começa com a pressão de separação para encontrar a pressão na cabeça necessária de modo a mover a vazão de fluxo assumida através da linha de fluxo até o separador. Neste componente, os métodos para determinar a pressão na cabeça são:

- **4** Temperatura e Compressibilidade Média
- **4** Weymouth
- ∔ Panhandle A
- ∔ Panhandle B

Cada um desses métodos tem o seu procedimento de cálculo apresentado no *capítulo 4, item 4.8.*

Os dados principais utilizados pelos métodos mencionados na determinação da pressão na cabeça são :

Pressão no Separador	=	1500 psia
Comprimento da Linha	=	1000 ft
Diâmetro da Linha	=	1,995- 2,445- 3,00- 3,5 in.
Fator Eficiência	=	0,92
Pressão Base	=	14,7 psia
Temperatura Base	=	520 °R

7.5.2.1 Temperatura e compressibilidade média

A análise feita na linha de fluxo serve para determinar a pressão na cabeça, para este método, utiliza-se a *equação 4.64, página 117*. A *tabela 7.27* mostra os valores da pressão na cabeça do poço para os diferentes diâmetros de linha.

Construiu-se a curva do comportamento na linha de fluxo para cada um dos diâmetros, *gráfico 7.12*

Vazão Gás	Pressão Sep	Pressão	Pressão	Pressão	Pressão
q_{sc}	p_{sep}	Cabeça	cabeça	cabeça	cabeça
MMscfd	Psia (2)	p_{wh}	p_{wh}	p_{wh}	p_{wh}
(1)		Psia (3)	Psia (3)	Psia (3)	Psia (3)
		1,995"	2,445"	3,00"	3,500"
0,00	1500	1500	1500	1500	1500
0,94	1500	1501	1500	1500	1500
1,88	1500	1504	1501	1501	1500
2,82	1500	1509	1503	1501	1501
3,76	1500	1515	1505	1502	1501
4,70	1500	1523	1509	1503	1501
5,64	1500	1533	1512	1504	1502
6,58	1500	1545	1517	1506	1503
7,52	1500	1558	1522	1508	1504
8,46	1500	1573	1527	1510	1505
9,40	1500	1589	1533	1512	1506

Tabela 7.27
Valores estimados da pressão na cabeça do poço para diferentes diâmetros
temperatura e compressibilidade média

(1) Tabela 7.23 (2) Pressão Separação (3) Elaboração própria

Os métodos de Weymouth, Panhandle A e Panhandle B, utilizam a *equação* 4.65, página 118, que varia em função de uma variável que depende do pesquisador, os valores das variáveis são apresentados na *tabela 4.4, página 118*.

7.5.2.2 Weymouth

Utilizando-se este método, foram encontrados os seguintes valores de pressão na cabeça do poço, partindo de uma vazão assumida e da pressão do separador. Sensibilizando-se o diâmetro na linha, obtém-se os seguintes valores de pressão, *tabela 7.28, gráfico 7.13*.

Weymounth					
Vazão Gás	Pressão Sep	Pressão	Pressão	Pressão	Pressão
q_{sc}	p_{sep}	Cabeça	cabeça	cabeça	cabeça
MMscfd	Psia (2)	p_{wh}	p_{wh}	p_{wh}	p_{wh}
(1)		Psia (3)	Psia (3)	Psia (3)	Psia (3)
		1,995"	2,445"	3,00"	3,500"
0,00	1500	1500	1500	1500	1500
0,94	1500	1502	1501	1500	1500
1,88	1500	1507	1502	1501	1500
2,82	1500	1516	1506	1502	1501
3,76	1500	1529	1510	1503	1501
4,70	1500	1545	1515	1505	1502
5,64	1500	1564	1522	1507	1503
6,58	1500	1587	1530	1510	1504
7,52	1500	1612	1539	1513	1506
8,46	1500	1640	1549	1517	1507
9,40	1500	1671	1561	1521	1509

Tabela 7.28
Valores estimados da pressão na cabeça do poço para diferentes diâmetros
Weymounth

(1) Tabela 7.23 (2) Pressão Separação (3) Elaboração própria

7.5.2.3 Panhandle A e B

Utilizando-se estes métodos foram encontrados os seguintes valores de pressão na cabeça do poço, partindo de uma vazão assumida e da pressão do separador. Sensibilizando-se o diâmetro na linha, obtém-se os seguintes valores de pressão, *tabela 7.29 e 7.30, gráfico 7.14 e 7.15*.

Panhandle A					
Vazão Gás	Pressão Sep	Pressão	Pressão	Pressão	Pressão
q_{sc}	p_{sep}	Cabeça	cabeça	cabeça	cabeça
MMscfd	Psia (2)	p_{wh}	p_{wh}	p_{wh}	p_{wh}
(1)		Psia (3)	Psia (3)	Psia (3)	Psia (3)
		1,995"	2,445"	3,00"	3,500"
0,00	1500	1500	1500	1500	1500
0,94	1500	1501	1500	1500	1500
1,88	1500	1503	1501	1500	1500
2,82	1500	1507	1502	1501	1500
3,76	1500	1511	1504	1502	1501
4,70	1500	1517	1506	1502	1501
5,64	1500	1524	1509	1503	1502
6,58	1500	1532	1512	1504	1502
7,52	1500	1540	1515	1506	1503
8,46	1500	1550	1519	1507	1503
9,40	1500	1560	1523	1508	1504

Tabela 7.29
Valores estimados da pressão na cabeça do poço para diferentes diâmetros
Panhandle A

(1) Tabela 7.23 (2) Pressão Separação (3) Elaboração própria

Valores estimados da pressão na cabeça do poço para diferentes diâmetros

		Panha	ndle B		
Vazão Gás	Pressão Sep	Pressão	Pressão	Pressão	Pressão
q_{sc}	p_{sep}	Cabeça	cabeça	cabeça	cabeça
MMscfd	Psia (2)	p_{wh}	p_{wh}	p_{wh}	p_{wh}
(1)		Psia (3)	Psia (3)	Psia (3)	Psia (3)
		1,995"	2,445"	3,00"	3,500"
	1500	1500	1500	1500	1500
0,94	1500	1501	1500	1500	1500
1,88	1500	1502	1501	1500	1500
2,82	1500	1505	1502	1501	1500
3,76	1500	1509	1503	1501	1501
4,70	1500	1515	1505	1502	1501
5,64	1500	1521	1508	1503	1501
6,58	1500	1528	1510	1504	1502
7,52	1500	1537	1513	1505	1502
8,46	1500	1546	1517	1506	1503
9,40	1500	1556	1521	1508	1504

(1) Tabela 7.23 (2) Pressão Separação (3) Elaboração própria

Fazendo-se uma comparação das tabelas 7.27, 7.28, 7.29 e 7.30 de pressões na cabeça pelos quatro métodos para os diferentes diâmetros de tubulação, observa-se que a diferença no valor da pressão não é muito significativa. Por conseguinte, o valor da pressão na cabeça do poço neste trabalho será aquele encontrado pelo método temperatura e compressibilidade média, por ser considerado o método geral. Com os métodos escolhidos em cada um dos componentes, Cullender e Smith no caso do primeiro componente e temperatura e compressibilidade média no caso do segundo componente, procede-se à elaboração de um gráfico que determine a capacidade de fluxo para os diferentes diâmetros sensibilizados, gráfico 7.16. No gráfico 7.16, pode-se observar que a Curva do Comportamento da Linha de Surgência não mostra uma queda significativa na pressão para os diferentes valores de vazão, portanto, a otimização que se pode realizar nesse caso é dependente ao custo da tubulação. Porém fazendo-se uma análise detalhada da queda de pressão na tabela 7.27, verifica-se que a partir do diâmetro de 3.00", a queda de pressão é muito mínima, por tanto, o diâmetro interno da Linha de Surgência escolhido na otimização será de 3.00". A influência da mudança de diâmetro da tubulação de produção do poço PUC – X1 é observada no gráfico 7.16; as capacidades de fluxo lidas são apresentadas na *tabela* 7.31.

(P _{wf} método pseudo pressão)							
Linha de Fluxo	Tubo de Produção	Vazão Gás	Pressão				
Diâmetro Interno, in.	Diâmetro Interno, in.	MMscfd	Psia				
(1)	(2)	(3)	(3)				
3	1,995	8,45	1510				
3	2,445	8,70	1510				
3	3,000	8,75	1510				
3	3,500	8,75	1510				

Tabela 7.31

(1) Diâmetro Linha de Fluxo (2) Diâmetro Interno sensibilizados tubo de Produção (3) Gráfico 7.16

Através da análise da tabela 7.31, verifica-se que não há diferenças significativas na capacidade de fluxo de um diâmetro para outro, portanto a otimização do Tubo de Produção depende do custo e não do incremento na vazão de produção. Neste trabalho, foi selecionado um diâmetro interno de 2.445", que fornece uma capacidade de produção de 8,70 MMscfd e uma pressão de cabeça de 1510 psia, valores sem restrição na linha de fluxo.

Análise de Aplicação

O mesmo procedimento da análise anterior foi realizado para determinar o tamanho do diâmetro do tubo de produção, utilizando-se as pressões de fundo do poço determinadas pelos métodos *simplificado*, (*tabela 7,32*, *gráfico 7,17*) *e pressão*, (*tabela 7,33*, *gráfico 7,18*).

Tabela 7.32 Capacidade de Fluxo para diferentes diâmetros do Tubo de Produção (P _{wf} método simplificado)						
Linha de Fluxo	Tubo de Produção	Vazão Gás	Pressão			
Diâmetro Interno, in.	Diâmetro Interno, in.	MMscfd	Psia			
(1)	(2)	(3)	(3)			
3	1,995	8,50	1510			
3	2,445	8,60	1510			
3	3,000	8,63	1510			
3	3,500	8,63	1510			

(1) Diâmetro Linha de Fluxo (2) Diâmetro Interno sensibilizados tubo de Produção (3) Gráfico 7.17

Tabela 7.33 Capacidade de Fluxo para diferentes diâmetros do Tubo de Produção (P _{wf} método pressão)						
Linha de Fluxo	Tubo de Produção	Vazão Gás	Pressão			
Diâmetro Interno, in.	Diâmetro Interno, in.	MMscfd	Psia			
(1)	(2)	(3)	(3)			
3	1,995	8,40	1510			
3	2,445	8,70	1510			
3	3,000	8,90	1510			
3	3,500	9,00	1510			

(1) Diâmetro Linha de Fluxo (2) Diâmetro Interno sensibilizados tubo de Produção (3) Gráfica 7.18

Ao comparar as *tabelas 7.31*, *7.32 e 7.33*, observa-se que os valores da capacidade de produção do poço PUC – X1 para os diferentes métodos de comportamento reservatório – poço (simplificado, pressão e pseudo pressão) sofrem uma pequena diferença em seu valor. Portanto, recomenda-se o método da análise **pseudo pressões** para determinar as pressões de fluxo do poço, p_{wf} , pois esse método considera o potencial de um gás real m(p), incorporando assim as variações da viscosidade e o fator Z que ocorrem com as mudanças de pressão.

7.6 Análise do tamanho do *choke* na superfície

O *choke*, de acordo com a *figura 2.4*, está representado pelo nó 2; para fazer esta análise, posicionamo-nos no nó 3 para determinar as vazões possíveis na superfície para diferentes diâmetros de *choke*. A solução é dividida em duas partes.

A primeira segue exatamente igual ao primeiro componente do *item 7.5* (diâmetro interno do tubo de produção 2,445") e a segunda determina os valores de pressão na cabeça para diferentes diâmetros de *choke*, esta análise parte dos valores de pressão determinados no *item 7.5* referente ao segundo componente (diâmetro interno da linha de fluxo 3,00").

A Curva do Comportamento do Choke (CCK), (tabela 7.34, gráfico 7.19) para os diferentes diâmetros de teste do poço, utiliza a equação 5.1, página 125, obtendo curvas similares às da figura 6.20 página 150.

Os dados principais são:

Relação de Calores específicos , k	=	1,25
Diâmetro do Choke , $\mathit{Ck}/\mathit{64}$ "	=	12 - 16 - 20 - 24
Coeficiente de Descarga , Cd	=	0,86

	Compo	ortamento do Uno	JKe				
Vazão Gás MMscfd (1)	Pressão Cabeça Psia (2)						
	12/64"	16/64"	20/64"	24/64"			
0,00	1500	1500	1500	1500			
0,94	1500	1500	1500	1500			
1,88	2520	1501	1501	1501			
2,81	3780	2126	1501	1501			
3,75	5040	2835	1814	1502			
4,69	6300	3544	2268	1575			
5,63	7560	4253	2722	1890			
6,56	8820	4961	3175	2205			
7,50	10080	5670	3629	2520			
8,44	11341	6379	4083	2835			
9,38	12601	7088	4536	3150			

Tabela 7.34 mportamento do Cho

(1) Tabela 7.23 (2) Elaboração Própria

Determinadas as Curvas do Comportamento do *Choke* (CCK), analisa-se o comportamento do sistema, *gráfico* 7.20, obtendo os seguintes resultados de pressão na cabeça e vazão de produção, *tabela* 7.35. Esta tabela resume as quedas de pressão para os quatro diâmetros diferentes de choke considerados, além das vazões de gás e condensado.

Valores de vazão e pressão para diferentes valores de choke							
Choke	Vazão Gás	Vazão Cond	Pressão	Pressão			
n/64"	MMscfd (1)	BPD (2)	Cabeça	Fundo			
			Psia (1)	Psia (1)			
12	4,50	72,00	6200	7900			
16	6,20	99,20	4750	6200			
20	7,35	117,60	3580	4850			
24	8,10	129,60	2800	3950			

 Tabela 7.35

 Valores de vazão e pressão para diferentes valores de chok

(1) Gráfica 7.20 (2) 16,0* vazão de gás

Com os valores obtidos na *tabela 7.35*, que seriam os valores de produção estimados para este poço, segundo a análise global realizada, comparam-se os valores estimados com os valores obtidos no teste de produção, *tabela 7,3*, sem observar diferença significativa nos valores de vazão de gás e condensado, além das pressões de cabeça e fundo do poço, portanto, podemos afirmar que as *Curvas do Comportamento* de cada um dos sistemas de nossa análise representam valores corretos e representativos.

Fazendo uma análise de sensibilidade ao diâmetro do *choke*, *gráfico* 8.21, determina-se que a partir de um *choke* de 34/64" não há mais influência do *choke* na produção do poço, obtendo-se uma capacidade de produção máxima do poço PUC - X1, *de* 8,75 *MMscfd*, valor muito próximo ao determinado na *página 195*, o qual nos dá segurança na interpretação de nossa análise.

A otimização do diâmetro do *choke* depende muito das necessidades de produção, ou seja, se há mercado para a venda deve-se produzir ao máximo, caso contrário deve-se ajustar a produção a um diâmetro de *choke* que não ultrapasse o permitido na queima de gás. É preciso muito cuidado nessa escolha, na diferencial de pressão, esta deve ser menor que a pressão de colapso da areia produtora a qual é determinada através de registros especiais que fazem um estudo da mecânica da rocha. Nesse sentido o *choke* escolhido para a produção do poço.

PUC - XI é de 24/64", obtendo-se uma maior produção de gás e condensado, além de ter uma menor queda na diferencial de pressão.

7.7 Análise do sistema na entrada ao separador

O sistema divide-se em dois subsistemas: o primeiro é o separador e o segundo é o reservatório, tubo de produção, *choke* e linha de fluxo, conforme esquematizado na *figura 6.15, página 146*. O procedimento de cálculo explica-se no *capítulo 6, página 141*.

A *tabela 7.36*, apresenta valores de pressão em cada um dos componentes do sistema de produção até chegar ao separador, tais valores foram obtidos com os diâmetros otimizados anteriormente, (Tubo de Produção 2,445", *Choke* = 24/64", Linha de fluxo 3,00"). Então obtém-se o *gráfico 7.22*, similar à *figura 6.16*, *página 146*.

Vazão Gás	Pressão Fundo	Pressão	Pressão	Pressão
q_{sc}	poço	Cabeça	Choke	Separador
MMscfd (1)	p_{wf}	p_{wh}	p_{Ck}	p_{sep}
	Psia (1)	Psia (2)	Psia (3)	Psia (3)
0,00	10477	8630	8630	8630
0,94	10208	8378	8376	8376
1,88	9812	8006	7995	7995
2,81	9288	7514	7488	7488
3,75	8637	6906	6856	6855
4,69	7859	6185	6096	6095
5,63	6949	5351	5202	5200
6,56	5903	4411	4154	4152
7,50	4689	3356	2858	2854
8,44	3207	2115	695	671
9,38	0	0	0	0

(1) Tabela 7.23, (2) Tabela 7.26, (3) Elaboração própria

Com a curva encontrada no *gráfico 7.22*, pode-se determinar vazões para diferentes valores de pressão de separação. A pressão de separação é otimizada de acordo com a pressão de planta .

7.8 Análise total do sistema

Com o resultado do exposto no presente estudo e com base em um poço em explotação de gás natural denominado PUC - XI e dados fornecidos nas *tabelas* 7.1, 7.2, 7,3 e 7.4, explica-se a teoria em capítulos anteriores com o objetivo de validar o comportamento do poço mencionado.

Para tal temos procedido à determinação de diferentes propriedades e variáveis com base em metodologias padrão de análise que regem o comportamento da explotação de um poço de gás natural.

Como resultado da análise matemática e gráfica obtém-se os diferentes valores otimizados do nosso sistema:

Pressão Média do Reservatório	:	\overline{p}_r	=	10477 psia
Diâmetro Interno do Tubo de Produç	ção:	di	=	2,445 pol.
Diâmetro do Choke	:	<i>n</i> /64'	' =	24
Diâmetro Interno da Linha de Fluxo	:	di	=	3,00 pol.
Pressão de Separação	:	p_{sep}	=	1500 psia

Obtidos esses valores, procede-se à determinação dos valores otimizados de produção do poço em estudo. Gerando a *tabela 7.37*, considerando o nó solução na saída do *choke*.

Com os valores da *tabela 7.37*, procede-se à determinação do *gráfico 7.23*, de onde obtemos os valores otimizados do poço PUC - XI.

Vazão de gás	:	q_g	-	8.1 MMscfd
Pressão de choke	:	<i>p_{ck}</i>	=	1510 psia
Pressão na cabeça	:	p_{wh}	=	2600 psia
Pressão de fluxo do poço	:	p_{wf}	=	3900 psia
Pressão na cabeça Pressão de fluxo do poço	:	p_{wh} p_{wf}	=	2800 psia 3900 psia

Vazão Gas	Pressão Fundo	Pressão	Pressão	Pressão
q _{sc} MMscfd (1)	poço P _{wf}	Cabeça p _{wh}	Choke P _{Ck}	Choke1 p _{sep}
0,00	10477	8630	8630	1500
0,94	10208	8378	8376	1500
1,88	9812	8006	7995	1501
2,81	9288	7514	7488	1501
3,75	8637	6906	6856	1502
4,69	7859	6185	6096	1503
5,63	6949	5351	5202	1504
6,56	5903	4411	4154	1506
7,50	4689	3356	2858	1508
8,44	3207	2115	695	1510
9,38	0	0	0	1512

.... h . 7 27

(1) Tabela 7.36, (2) Elaboração própria

